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Abstract

Hypnogram is a plot describing the sleep stages during the sleep process. Hypnogram
plays an important role in sleep study. In this work, we propose to model hypnogram
data with nonhomogeneous discrete semi-markov process. We give a formal defi-
nition of such model and prove its likelihood can be decomposed into each transition type
through proper approximation. Then we use a novel parametrization for nonhomogene-
ity which can separate the baseline transition intensity and the effect of nonhomogeneity
meanwhile can be efficiently estimated. We propose a method of deriving a mean pattern
which is representative and simple compared to the rather noisy data. Our empirical
results are consistent with existing medical sleep studies.
Keywords. semi-markov process, competing risk model

1 Introduction

Hypnogram is a plot describing the sleep stages during the sleep process. It can be perceived as a
categorical time series. Hypnogram plays an important role in sleep study (Swihart et al., 2008).
When given large samples of hypnograms, an efficient way to explore its routine in a statistical way
is urgently needed. We also hope to summarise the heterogeneous hypnogram observations into a
simple but representative mean pattern.

From the perspective of categorical time series, statistical modeling methods can be summarised
into 4 methods. The Multi-State model, the link function approach(Fahrmeir and Kaufmann, 1987),
the likelihood-based approach(Fokianos and Kedem, 1998) and spectral envelope approach(Stoffer
et al., 1993). In this report, we majorly follow the research line of the Multi-State model. We
extend the existing method by proposing weaker assumptions.

The Multi-State Model is defined as a model for a continuous or discrete time stochastic process
allowing individuals to move between a finite number of states. It can be generally specified by
the transition kernel. However, parametrization and estimation of transition kernel is inefficient.
The major way to reduce computational cost is by introducing assumptions. The most widely
used assumption is the homogeneous Markov assumption where sojourn times follow a exponential
distribution(Andersen and Keiding, 2002). However, the homogeneous Markov assumption can be
too restrictive. Weaker assumptions are proposed including the semi-markov assumption where
sojourn time can take any distribution.

Existing literature on semi-markov process(SMP) modeling majorly focuses on the homoge-
neous and continuous case. Kang and Lagakos (2007) proposes to model homogeneous SMP using
transition intensity(equivalently cause-specific hazard). The estimation of the transition function is
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done by jointly optimizing the likelihood function, which is costly. Asanjarani et al. (2021) proposes
to decompose the likelihood of continuous homogeneous SMP into each transition type and use the
standard survival analysis method to separately estimate transition intensity. Their method is easy
to implement, however, homogeneous assumption is still too strong for real-world applications.

Therefore, we introduce the nonhomogeneous discrete semi-markov process to model our hypno-
gram data. We manage to extend the method of likelihood decomposition to the discrete non-
homogeneous situation through an approximation. Then we explicitly model nonhomogeneity with
a time-varying covariate in the proportional hazard model. Through that, we manage to separately
specify the baseline transition intensity and the change of intensity caused by nonhomogeneity.
Compared to existing method on modeling nonhomogeneity as shown in Fahrmeir and Klinger
(1998), our method is easier to implement meanwhile can separate the effect of baseline intensity
of effct of nonhomogeneity, therefore more interpretable.

After property modeling our data, we summarise the estimation result by predicting a mean
pattern. The mean pattern can be perceived as a mean of an infinite-dimensional mixed random
vector. We propose a way to derive the mean pattern that can capture the major mode of sleep
process as shown in the experiments.

Our report covers the following parts in the following order. In section ??, we introduce the
notations and basic properties of the probabilistic model we use. In section ??, we introduce our
methods of parametrization for the model and estimation procedure. In section 2.4, we introduce
how we derive the mean pattern after requiring the estimation. In section 3, we show our result on
the oura ring pregnant women’s data.

2 Methodology

2.1 Discrete Nonhomogeneous Semi-Markov Process

Let S denote a discrete state set. Map its element to integers in [S] = [m] := {1, 2, · · · ,m}. Denote
a sequence of r.v. take value in [m] as {Xt, t ∈ N} representing the state of system at time point
t. Denote T0 = 0, Tn = min{t,Xt ̸= XTn−1}, n ≥ 1. and Jn = XTn , τn = Tn − Tn−1. We call
{Xt, t ∈ N} a discrete-time multi-state process. And Jn and Tn are nth state and corresponding
transition time respectively. In the context of hypnogram modeling, we always assume there is a
deterministic initial state J0 = s0. We also assume there is an absorbing state denoted as sa.

The semi-markov property holds if and only if,

Pr{Jn = j, τn = t|Jn−1 = i, Tn−1, ..., T1, J0} = Pr{Jn = j, τn = t|Jn−1 = i, Tn−1}, ∀n. (2.1)

Further, if the joint conditional probability of Jn, τn given Jn−1, Tn−1 is the same for any n, we call
{Xt, t ∈ N} a discrete nonhomogeneous semi-markov process(dnsmp).

Due to the semi-markov property, it’s straightforward to verify that {Xt, t ∈ N} can to specified
by the conditional joint distribution of Jn, τn given Jn−1, Tn−1 which is denoted as,

p(j, t|i, Tn−1) := Pr(Jn = j, τn = t|Jn−1 = i, Tn−1). (2.2)

An alternative to specify the process is by transition intensity function defined as,

λij(t|Tn−1) := Pr(τn = t, Jn = j|Jn−1 = i, τn ≥ t, Tn−1).

It’s straightforward to verify that the transition intensity function can derive p(j, t|i, Th−1).
Dfine the conditional survival function of τn as

Si(t|Tn−1) = Pr(τn ≥ t|jn−1 = i, Tn−1).

Then we have p(j, t|i, Tn−1) = λij(t|Tn−1)Si(t|Tn−1).

2



2.2 Multinomial Representation

2.2.1 Multinomial Reponse as Member of Multivariate Exponential Family and VGM

Suppose ỹT = (y1, y2, ..., ym) ∼ M(1, λ1, λ2, · · · , 1−
∑m−1

k=1 λk, ). Denote λm = 1−
∑m−1

k=1 λk. The
distribution function of ỹ is,

f(ỹ) =
m∏
k=1

(λk)
yk

= exp
[m−1∑
k=1

yklog(λk) + (1−
m−1∑
k=1

yk)log(λm)
]

= exp
[m−1∑
k=1

yklog(
λk

λm
) + log(λm)

]
Define yT = (y1, · · · , ym−1), it belongs to the exponential family since,

f(y,θ) = exp[yTθ + c(θ)],

where θT = (log(
λ1

λm
), · · · , log(λm−1

λm
)),

here θ is called natural parameter, and c is a function of natural parameter in the context of
exponential family. The conditionial mean of y is µ = (λ1, · · · , λm−1)

T . As long as we define
the predictor part η = (η1(x), · · · , ηm−1(x)), and find a link function g(µ) = η, we complete the
parametrization of the model.

We can see that it differs from the GLM and GAM in that y,θ,µ are all multivariate. We gen-
erally call it Vector Generalized Model(VGM) for we cannot decide yet whether the predictor
part η is linear w.r.t x.

2.2.2 Multinomial Representation of Discrete SMP

Consider one day’s sleep trajectory {Jn, Tn}Nn=0. Define τn = Tn − Tn−1. The likelihood is,

L =
N∏

n=1

p(Jn, τn|Tn−1, Jn−1) =
N∏

n=1

λJn−1Jn(τn|Tn−1)SJn−1(τn|Tn−1)

=
N∏

n=1

λJn−1Jn(τn|Tn−1)
∏

t≤τn−1

[1−
∑

k ̸=Jn−1

λJn−1k(t|Tn−1)].

The second equation holds due to the semi-markov property. And the third equation holds due to
the relationship between survival and hazard function.

Now define Ynt as,

Ynt =

{
Jn if τn+1 > t,

k if τn+1 = t and Jn+1 = k.

Define ynt to be the one-hot encoder of Ynt where,

yT
nt = (ynt0, ynt1, . . . , yntk, . . . , yntm) = (0, . . . , 1, . . . , 0),

where yntk = 1 for Ynt = k.
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Using ynt, we can rewrite the likelihood as

L =
N∏

n=1

τn∏
t=1

{[ m∏
k=1

k ̸=Jn−1

λJn−1k(t|Tn−1)
yn−1tk ][1−

m∑
k=1

k ̸=Jn−1

λJn−1k(t|Tn)
]yn−1t0

}

The final step is to swap the order of multiplication. We introduce indicator 1Jn=i and Ii
represents the index set of all n ∈ {0, 1, · · · , N − 1} which satisfies that Jn = i. Then write
likelihood as L =

∏
i∈[m] Li,where

Li =

N∏
n=1

{ τn∏
t=1

[ m∏
k=1

k ̸=Jn−1

λik(t|Tn−1)
yn−1tk ][1−

m∑
k=1

k ̸=Jn−1

λJn−1k(t|Tn−1)
]yn−1t0

}1Jn−1=i

=
∏
n∈Ii

Li
n

Li
n =

τn+1∏
t=1

{[ m∏
k=1
k ̸=i

λik(t|Tn)
yntk ][1−

m∑
k=1
k ̸=i

λik(t|Tn)
]ynti

}
. (2.3)

Firstly, since the likelihood can be decomposed into different Li, and each Li will not contain
joint parameters as we illustrate later. We can deal with them seperately.

Furthermore, We can see that for each n ∈ I, equation 2.3 is the same as the likelihood for
the τn+1 observations yn1, . . .ynτn+1 of a multinomial response model. The indicator yntk variables
actually represent the distributions given that a specific epoch(t) is reached. Given that after system
reaches Jn = i and exactly t epoch has passed, then the response is multinomially distributed with
yT
nt = (ynt1, . . . , ynti, . . . , yntm) ∼ M

(
1, λi1(t|Tn), . . . , 1−

∑
k=1
k ̸=i

λik(t|Tn), . . . , λim(t|Tn)
)
.

In conclusion, now for each i we have independent response variable {Ynt}n∈I,t∈[τn+1] or equally
{ynt}n∈I,t∈[τn+1]. And its corresponding covariate(or predictor) is t and Tn as illustrated in equation
2.3. We use Vector Generalized Model in section 2.2.1 to model the regression relationship between
Ynt and (t, Tn).

2.2.3 Vector Generalized Semi-parametric Parametrization

To simplify notation, we only show how we parameterize samples from Im. Now we parameterize the
model by designing the predictor part ηm

nt = (ηm1 (t, Tn), . . . , η
m
m−1(t, Tn))

T . The most generalized
way is to assume ηmk is an unspecified function of t and Tn. However, it’s redundant, especially for
t to perceive it as a continuous variable thus incorporating nolinear component w.r.t. t. Notice in
reality, t represents the number of episodes system stays after it jumps to a certain state, therefore
t only takes a finite number of values. We regulate the model and assume support of τn is finite
{1, 2, . . . , r}. Therefore we can perceive t as a categorical variable and further one-hot-encode it as
t ∈ {0, 1}r−1.

For Tn, there’s no need to assume linearity for ηmk w.r.t. Tn, and we incorporate nonlinear part
into it. Finally, we parameterize the predictor part as,

ηmk (t, Tn) := tTβm
k + fm

k (Tn), k = 1, . . . ,m− 1

The predictor is partially linear w.r.t. the covariate xnt = (tT , Tn)
T , and is semi-parametric. So

we classify our model in the literature of Vector Generalized Semi-parametric(or partially
linear) model.
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Finally, corresponding the standard VGM modeling introduced in section 2.2.1, we only need
to specify the link function which is the canonical link,

g = h−1

h(η) = (h1(η), · · · , hm−1(η))
T

hk(η) =
exp(ηk)

1 +
∑m−1

j=1 exp(ηj)

We summarise our model as follows, for all samples {Ynt,xnt}n∈Ii,t∈[τn+1], we have,

Pr(Ynt = k) =

{
λik(t|Tn), if k ̸= i

1−
∑m

j=1 λij(t|Tn), k = i
, if t = 1, 2, · · · , τn

λik(t|Tn) = hk(η
i
nt),

ηi
nt =

(
ηi1(t, Tn), . . . , η

i
i−1(t, Tn), η

i
i+1(t, Tn), . . . , η

i
m−1(t, Tn)

)T
ηik(t, Tn) = tTβi

k + f i
k(Tn), k ̸= i

hk(η
i
nt) =

exp[ηik(t, Tn)]

1 +
∑m

j=1,j ̸=i exp[(η
i
j(t, Tn)]

.

(2.4)

The log-likelihood of our model for each starting state i is,

li =
∑
n∈Ii

τn+1∑
t=1

{ m∑
k=1
k ̸=i

yntk[log[hk(η
i
nt)] + yntilog(1−

m∑
j=1
j ̸=i

hj(η
i
nt)]

}
.

2.2.4 Discussion

We categorize our model into Vector Generalized Semi-parametric Model. In statistical
literature, generalized linear model is a widely used model for regression of non-gaussian response
variables. Soon the model is extended to the setting where covariates have nonlinear effect and
generalized additive model(GAM) is brought up as a simple way to deal with smoothing multiple
predictors. However, our model is between them for we both have linear and nonlinear
component. In statistical literature, it is mostly refered to generalized partially nonlinear model
or generalized semi-parametric model.

Another thing to notice is that most of the GLM or GAM or GPLM literature considers the
case when the response variable is univariate, however, a multinomial distribution is a special case
in exponential family because its response is multivariate. Therefore, our model also differs in
that the reponse is a vector.

2.3 Estimation

Since we introduce nonlinear(or nonparametric) part in equation 2.4, we have to consider how to
estimate f ik(here i is the subscript for different starting state and k is the state system jumps to).
When estimating functions, it involves literature of smoothing. From my knowledge, there are

Here, we talk about two broad categories of smoothers:

• Regression or series smoothers(regression spline, polynomial series).

• Smoothing spline.
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2.3.1 Regression Spline

In the first category, we show how to estimate the model through regression spline, which is also
the simplest way in three categories.

To the best of our knowledge, regression spline is simply approximating f i
k with a linear combi-

nation of spline bases
∑

γsBs(). We simply evaluate Bs() in given points and incorporate them into
design matrix. In conclusion, estimation procedure using regression is the same as Vector GLM.

For vector GLM, the estimation of parameters is through Iteratively Reweighted Least Square(IRLS)

2.3.2 Smoothing Spline

Different from regression spline, smoothing spline add smoothing penalty to the loss function and
estimate the coefficient.

2.4 Mean Pattern Derivation

After we estimate all the parameters and have the whole probability model in hand, our next job
is to derive a mean pattern to summarise the noisy data.

We define the mean pattern to be a predicted hypnogram denoted with {Ĵh, T̂h}Ĥh=0. However,
since Jh is a discrete random variable that does not take value in R, it’s not trivial to define its
mean value. Therefore, we combine the idea of maximum probability and conventional mean to
derive the mean pattern. The mean pattern is computed by first setting Ĵ0 = s0 and T̂0 = 0, and
then compute,

Ĵh = argmax
j

Pr(Jh = j|Jh−1 = Ĵh−1, Th−1 = T̂h−1). (2.5)

Then compute
τ̂h = E[τh|Jh = Ĵh, Jh−1 = Ĵh−1, Th−1 = T̂h−1]. (2.6)

Then T̂h = T̂h−1 + τ̂h. And the mean pattern is ended when the predicted trajectory reaches
absorbing state sa.

3 Real Data Studies

Our data is collected from 17 women wearing oura ring during their pregnancy. Our data consists
of consecutive sleep observations from observation of up to 12 months.

We fit the model using the data we gathered. In implementation, βij(·) is estimated using
B-spline functions. After acquiring estimation, we adopt the method in section 2.4 and derive the
mean pattern. The result is shown in figure 1. When drawing this plot, we did not include covariate
into the model.
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Figure 1: Predicted Mean Pattern

The mean pattern is simple and representative compared to the rather noisy original data. We
draw three conclusions from the fitted mean pattern. 1. At early sleep process, one alternates
between light and deep sleep for several times. 2. During later half of the sleep process, one
alternates between light and REM stage for several times. 3. The duration of each sleep stage
undergoes gradual and monotonous change. The duration of deep sleep is increasing while the
sleep duration of light sleep first increase then decrease.

We also fit the mean pattern for different phases of pregnancy. We use data from 10-19, 20-29,
30-39 months of pregnancy seperately to fit model and to derive mean pattern. The results are
shown in figure 2.

We observe that as time passes, pregnant women’s sleep quality is deteriorating as they have
less deep sleep. They also have trouble getting into deep sleep as observed from the mean pattern
of 30-39 weeks of pregnancy.

Figure 2: Change of Mean Pattern During Pregnancy

Finally, we fit mean pattern of different individuals. It turns out that there is strong hetero-
geneity from different individual’s sleep, however they all follow the overall mean patten which is
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first deep and light sleep, and then light and REM sleep. Serious deviations from this pattern
may indicate abnormal health conditions. For example, as figure 3 has shown, individual 19 has
abnormal mean pattern, which might be explained by the fact that she is over 30 years old and is
severely overweight.

Figure 3: Individual Mean Patterns

4 Conclusion and Discussions

The conclusion and contribution of our work are as follows. Firstly, we give a simple definition to
nonhomogeneous discrete semi-markov process. We prove its likelihood can be decomposed into
binary regression through proper approximation. Secondly, we use a novel parametrization for non-
homogeneity which can separate the baseline transition intensity and the effect of nonhomogeneity
meanwhile can be efficiently estimated. Third, we propose a method of deriving mean pattern and
our empirical results are consistent with existing medical sleep studies.

Our drawbacks and future work are as follows: the estimation’s consistency and inference have
not been discussed in this report. Though Lee et al. (2018) gave a consistency theory in their paper,
which demonstrates the estimation is asymptotic normal and unbiased, and they use a sandwiched
estimator for the variance. However, their proof directly neglects the approximation error of the
likelihood therefore is not the true error under the proposed model. Our future work can include
deriving the comprehensive consistency theory for such estimation.
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